Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « <u>07</u> » декабря 20 <u>22</u> г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина:	Сопротивление материалов
	(наименование)
Форма обучения:	очная
	(очная/очно-заочная/заочная)
Уровень высшего образования:	специалитет
	(бакалавриат/специалитет/магистратура)
Общая трудоёмкость:	252 (7)
	(часы (ЗЕ))
Направление подготовки:	08.05.01 Строительство уникальных зданий и
-	сооружений
	(код и наименование направления)
Направленность: Строите	ельство высотных и большепролетных зданий и
·	сооружений
	(наименование образовательной программы)

1. Общие положения

1.1. Цели и задачи дисциплины

Цель учебной дисциплины – знание принципов и освоение методов расчета на прочность, жесткость и устойчивость деталей конструкций и машин.

Задачи дисциплины:

- формирование понятий о прочности, жесткости и устойчивости стержневых систем;
- изучение основных закономерностей деформирования твердых тел под действием нагрузок;
- формирование навыков проведения проверочных расчетов, проектировочных расчетов и расчетов на грузоподъемность.

1.2. Изучаемые объекты дисциплины

- прочность и жесткость стержневых систем при различных видах статического нагружения;
- основы напряженно-деформированного состояния твердого тела;
- критерии прочности и пластичности;
- устойчивость сжатых стержней;
- элементы рационального проектирования простейших систем.

1.3. Входные требования

Не предусмотрены

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-1	ИД-1ОПК-1	Знает теоретические положения, лежащие в основе расчета на прочность, жесткость, устойчивость стержневых систем.	Знает: порядок выбора фундаментальных законов, описывающих изучаемый процесс или явление	Экзамен
ОПК-1	ид-20ПК-1	Умеет составлять расчетные схемы, определять внутренние усилия и напряжения.	Умеет: составлять математическую модель, описывающую изучаемый процесс или явление, проводить выбор и обоснование граничных и начальных условий; оценивать адекватность результатов моделирования, формулировать предложения по использованию математической модели для решения задач профессиональной деятельности.	Курсовая работа

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ОПК-1	ИД-3ОПК-1	Владеет: методами расчетов элементов конструкций на прочность, жесткость и устойчивость; типовыми методами анализа напряженного и деформированного состояния элементов конструкций при простейших видах нагружения.	-	Защита лабораторной работы
ОПК-3	ИД-1ОПК-3	Знает элементы рационального проектирования простейших систем.	Знает: методику формулирования научно-технической задачи в сфере профессиональной деятельности на основе знания проблем отрасли и опыта их решения; последовательность сбора и систематизации информации об опыте решения научнотехнической задачи в сфере профессиональной деятельности	Зачет
ОПК-3	ИД-2ОПК-3	Умеет: проектировать типовые элементы конструкций, выполнять оценку их прочности, жесткости, устойчивости; использовать справочную литературу, стандарты и другие нормативные документы.	Умеет: выбирать методы решения, устанавливать ограничения к решению научно-технической задачи в сфере профессиональной деятельности на основе нормативно-технической документации и знания проблем отрасли и опыта их решения	Курсовая работа
ОПК-3	ИД-3ОПК-3	Владеет навыками выполнения научных экспериментов, методами и приемами работы с современным исследовательским оборудованием и приборами.	Владеет навыками: составления перечня работ и ресурсов, необходимых для решения научнотехнической задачи в сфере профессиональной деятельности; разработки и обоснования выбора варианта решения научнотехнической задачи в сфере профессиональной деятельности.	Защита лабораторной работы

3. Объем и виды учебной работы

Вид учебной работы	Всего	Распределение по семестрам в часах	
	часов	Номер семестра	
		3	4
1. Проведение учебных занятий (включая проведе-	90	54	36
ние текущего контроля успеваемости) в форме:			
1.1. Контактная аудиторная работа, из них:			
- лекции (Л)	32	16	16
- лабораторные работы (ЛР)	18	18	
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	36	18	18
- контроль самостоятельной работы (КСР)	4	2	2
- контрольная работа			
1.2. Самостоятельная работа студентов (СРС)	126	54 72	
2. Промежуточная аттестация			
Экзамен	36		36
Дифференцированный зачет			
Зачет	9	9	
Курсовой проект (КП)			
Курсовая работа (КР)	18		18
Общая трудоемкость дисциплины	252	108	144

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием		ем аудито і́ по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
3-й семес	гр	_		
Растяжение и сжатие	2	8	2	10
Введение. Основные понятия. Центральное растяжение и сжатие. Механические свойства конструкционных материалов. Геометрические характеристики плоских сечений.				
Сдвиг. Кручение	2	2	2	4
Расчет на срез. Кручение.				
Изгиб прямого стержня	8	4	10	25
Внутренние силовые факторы при изгибе балок. Напряжение в балке при чистом изгибе. Напряжения при поперечном изгибе. Определение перемещений при изгибе.				
Статически неопределимые стержневые системы		4	4	15
Расчет статически неопределимых стержневых систем методом сил.				
ИТОГО по 3-му семестру	16	18	18	54
4-й семестр				

Наименование разделов дисциплины с кратким содержанием		ем аудито по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
Основы теории напряженного и деформированного состояния	4	0	4	10
Анализ напряженного и деформированного состояния в точке тела. Теории прочности.				
Сложное сопротивление		0	10	52
Косой изгиб. Внецентренное растяжение (сжатие). Изгиб с кручением. Общий случай действия сил.				
Устойчивость стержней		0	4	10
Устойчивость сжатых стержней.				
ИТОГО по 4-му семестру	16	0	18	72
ИТОГО по дисциплине	32	18	36	126

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Расчет на прочность стержневой системы растяжения-сжатия
2	Геометрические характеристики плоского симметричного сечения
3	Расчет вала на прочность и жесткость
4	Расчет балки на прочность по нормальным напряжениям
5	Расчет на прочность двутавровой балки
6	Расчет рамы на прочность
7	Определение перемещений в балках методом начальных параметров
8	Определение перемещений в балках интегралом Мора и способом Верещагина
9	Определение перемещений в рамах способом Верещагина
10	Расчет статически неопределимых балок
11	Расчет статически неопределимых рам
12	Анализ напряженно-деформированного состояния в точке
13	Расчет на прочность балок при косом изгибе
14	Расчет на прочность стержней при внецентренном сжатии
15	Расчет плоской рамы на прочность при изгибе с кручением
16	Расчет на устойчивость центрально сжатого стержня

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Испытание на растяжение конструкционных сталей
2	Сравнительные испытания на сжатие хрупких и пластичных материалов
3	Определение модуля продольной упругости и коэффициента Пуассона стали
4	Определение модуля сдвига стали
5	Определение напряжений в сечении балки при изгибе
6	Определение перемещений балки при изгибе
7	Теорема взаимности работ

Тематика примерных курсовых проектов/работ

№ п.п. Наименование темы курсовых проектов/работ		Наименование темы курсовых проектов/работ
	1	Проектирование элементов стержневых систем на прочность и жесткость

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

	Библиографическое описание	Количество
№ п/п	(автор, заглавие, вид издания, место, издательство,	экземпляров в
	год издания, количество страниц)	библиотеке
	1. Основная литература	
1	Балакирев А. А., Римм Т. Э. Сопротивление материалов. Ч. 1. Пермь: Изд-во ПНИПУ, 2012. 223 с. 14,0 усл. печ. л.	5
2	Римм Т. Э., Никитина А. Н., Балакирев А. А. Сопротивление материалов. Ч. 2. Пермь : Изд-во ПНИПУ, 2019. 130 с. 8,25 усл. печ. л.	30
3	Сопротивление материалов. Ч. 1. Москва: Юрайт, 2016. 293 с. 22,7 усл. печ. л.	1
4	Сопротивление материалов. Ч. 2. Москва: Юрайт, 2016. 273 с. 21,15 усл. печ. л.	1
	2. Дополнительная литература	
	2.1. Учебные и научные издания	
1	Писаренко Г. С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. 3-е изд., перераб. и доп. Киев : Дельта, 2008. 813 с.	20
2	Феодосьев В. И. Сопротивление материалов: учебник для вузов. 17-изд., испр. Москва: Изд-во МГТУ им. Н. Э. Баумана, 2018. 542 с. 34,0 усл. печ. л.	11
	2.2. Периодические издания	
1	Строительная механика и расчет сооружений: научно-технический журнал. Москва: Строительство, 1959	
	2.3. Нормативно-технические издания	
1	Справочные таблицы для выполнения учебных заданий и курсовых работ по курсу Сопротивление материалов. Пермь: Изд-во ПГТУ, 2009. 33 с. 2,25 усл. печ. л.	1
	3. Методические указания для студентов по освоению дисципли	ны
1	Сопротивление материалов. Задания к выполнению курсовых и расчетно-проектировочных работ : [учебное пособие]. Пермь : Изд-во ПНИПУ, 2020. 91 с. 5,75 усл. печ. л.	5
	4. Учебно-методическое обеспечение самостоятельной работы сту	дента

1	Лосева М. А., Сиротенко Л. Д., Матыгуллина Е. В. Практические	5
	задания по сопротивлению материалов: учебно-методическое	
	пособие. Пермь: Изд-во ПНИПУ, 2018. 192 с. 12,12 усл. печ. л.	
2	Чернова Т. В. Сопротивление материалов. Примеры решения	25
	типовых задач : учебно-методическое пособие. Пермь : Изд-во	
	ПНИПУ, 2015. 95 с. 6,0 усл. печ. л.	

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Основная		http://elib.pstu.ru/Record/RU	локальная сеть;
литература		PNRPUelib3402	свободный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)
1 1	Microsoft Office Professional 2007. лиц. 42661567

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
1	http://lib.pstu.ru/
исследовательского политехнического университета	
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
Курсовая работа	Доска	1
Лабораторная	Доска	1
работа		

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц
1 1	Испытательный учебный стенд «Основы	1
работа	сопротивления материалов» ОСМ-11ЛР-11	
Лекция	Ноутбук, проектор, экран, доска	1
Практическое	Доска	1
занятие		

8. Фонд оценочных средств дисциплины

Фонд оценочных средств для проведения промежуточной аттестации обучающихся является частью (приложением) к рабочей программе дисциплины «Сопротивление материалов». Текущий контроль проводится в форме защиты лабораторных работ, проверки самостоятельной работы студентов. Рубежный контроль проводится в форме тестирования и контрольной работы. Итоговым контролем является экзамен и курсовая работа.

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Сопротивление материалов»

Приложение к рабочей программе дисциплины

Специальность: 08.05.01 – Строительство уникальных зданий и

сооружений

Специализация: «Строительство подземных сооружений»

Квалификация выпускника: специалист

Выпускающая кафедра: Строительное производство и геотехника

Форма обучения: очная

Курс: 2 Семестр: 3, 4

Трудоёмкость:

Кредитов по рабочему учебному плану: 7 ЗЕ Часов по рабочему учебному плану: 252 ч.

Виды промежуточного контроля:

Зачет: 3 сем. Курсовая работа: 4 сем. Экзамен: 4 сем.

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Сопротивление материалов» является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень формируемых частей компетенций, этапы их формирования и контролируемые результаты обучения

1.1. Формируемые части компетенций

Согласно КМВ ОПОП учебная дисциплина участвует в формировании 2-х компетенций: ОПК-1, ОПК-3:

ОПК-1 - Способен решать прикладные задачи строительной отрасли, используя теорию и методы фундаментальных наук;

ОПК-3 - Способен принимать решения в профессиональной деятельности, используя теоретические основы, нормативно-правовую базу, практический опыт капитального строительства, а также знания о современном уровне его развития.

1.2. Этапы формирования дисциплинарных частей компетенций, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение двух семестров (3 и 4-го семестров базового учебного плана) и разбито на 7 разделов. В каждом разделе предусмотрены аудиторные лекционные, практические занятия, а также самостоятельная работа студентов. В разделах 1-4 предусмотрены лабораторные работы. В рамках освоения учебного материала дисциплины формируются компоненты дисциплинарных компетенций знать, уметь, владеть, указанные в РПД, и которые выступают в качестве контролируемых результатов обучения (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического и практического материала, выполнении и защите лабораторных работ и курсовой работы, а также при сдаче экзамена и зачета. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

	Вид контроля						
Контролируемые результаты обучения по дисциплине (ЗУВы)	Теку- щий	Py	бежный		Пром	іежуто	чный
	TB	РКР/Т	РПР	ОЛР	КР	Экз.	Зач.
Усвоенные знания							
31: знает теоретические положения, лежащие в	TB	PKP/T	РПР		КР	TB	TB
основе расчета на прочность, жесткость,							

устойчивость стержневых систем.							
31: знает элементы рационального	TB	PKP/T	РПР		КР	TB	TB
проектирования простейших систем.							
Освоен	ные умени	ІЯ					
У.1: умеет составлять расчетные схемы,		PKP/T	РПР	ОЛР	КР	П3	П3
определять внутренние усилия и напряжения.							
У.2: умеет проектировать типовые элементы		PKP/T	РПР	ОЛР	КР	П3	П3
конструкций, выполнять оценку их прочности,							
жесткости, устойчивости; использовать							
справочную литературу, стандарты и другие							
нормативные документы.							
Приобрете	Приобретенные владения						
В.1: владеет методами расчетов элементов				ОЛР	КР	П3	
конструкций на прочность, жесткость и							
устойчивость; типовыми методами анализа							
напряженного и деформированного состояния							
элементов конструкций при простейших видах							
нагружения.							
В.2: владеет навыками выполнения научных				ОЛР	KР	П3	
экспериментов, методами и приемами работы с							
современным исследовательским оборудованием							
и приборами.							

C-собеседование, PKP/T — рубежная контрольная работа / тестирование; $P\Pi P$ — расчетно-проектировочная работа; $O\Pi P$ — отчет по лабораторной работе; KP — курсовая работа; TB — теоретический вопрос, ΠS — практическое задание, T — тестирование.

Итоговой оценкой освоения дисциплинарных компетенций (результатов обучения по дисциплине) является промежуточная аттестация в виде курсовой работы, экзамена и зачета, проводимых с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

2.1. Текущий контроль

Текущий контроль для оценивания знаниевого компонента дисциплинарных частей компетенций (табл. 1.1) в форме теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений дисциплинарных частей компетенций (табл. 1.1) проводится согласно графику учебного процесса, приведенного в РПД, в форме тестирований, рубежных контрольных работ, проверки расчетно-проектировочных работ, защиты лабораторных работ.

2.2.1. Тестирование

Запланировано два бланочных тестирования (Т), после освоения студентами учебных модулей дисциплины. Первое тестирование по разделу 1 «Растяжение и сжатие», второе тестирование – по разделу 3 «Изгиб прямого стержня».

2.2.2. Рубежная контрольная работа

Запланировано 2 рубежные контрольные работы. Рубежные контрольные работы (КР) проводятся в виде индивидуального письменного задания после изучения теоретического и практического материала раздела 4 «Статически неопределимые стержневые системы» и раздела 6 «Сложное сопротивление». КР выполняются на листах формата А4 и содержат расчетную и графическую части.

Типовые задания первой КР:

Раскрыть статическую неопределимость балки методом, подобрать размеры сечение, найти перемещение заданного сечения.

Типовые задания второй КР:

- 1. Выполнить проектировочный расчет балки при косом изгибе.
- 2. Выполнить проектировочный расчет балки при изгибе с кручением.
- 3. Выполнить расчет на грузоподъемность внецентренно сжатого стержня.

Типовые шкала и критерии оценки результатов рубежной контрольной работы приведены в общей части ФОС программы специалитета.

2.2.3. Проверка расчетно-проектировочных работ

Всего запланировано 14 расчетно-проектировочных работ. Рубежные расчетно-проектировочные работы (РПР) выполняются согласно графику учебного процесса в 3 и 4 семестрах после изучения теоретического курса и практических занятий по каждой теме.

Рубежные РПР оформляются в виде отчета, содержащего расчетную и графическую части. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

Типовые шкала и критерии оценки приведены в общей части ФОС программы специалитета.

2.2.4. Защита лабораторных работ

В 3 семестре запланировано 7 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех расчетно-проектировочных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация проводится в форме зачета (3 семестр) и курсовой работы и экзамена (4 семестр) с проведением аттестационного испытания по билетам.

2.3.1. Зачет (3 семестр)

Зачет по дисциплине основывается на результатах выполнения расчетно-проектировочных работ и защите лабораторных работ.

Критерии выведения итоговой оценки за компоненты компетенций при проведении промежуточной аттестации в виде зачета приведены в общей части ФОС образовательной программы.

2.3.2. Курсовая работа (4 семестр)

Согласно РПД темой курсовой работы является «Расчет на прочность, жесткость и учтойчивость элементов стержневых конструкций при различных видах нагружения». Курсовая работа состоит из 14 расчетно-проектировочных работ.

Варианты исходных данных выдаются каждому студенту индивидуально в соответствии с учебным шифром.

Типовые задания для курсовой работы:

- 1. Определение грузоподъемности стержневой системы растяжения-сжатия.
- 2. Геометрические характеристики плоского сечения.
- 3. Расчет вала на прочность и жесткость.
- 4. Расчет балки на прочность по нормальным напряжениям.
- 5. Расчет на прочность двутавровой балки.
- 6. Расчет рамы на прочность.
- 7. Определение перемещений в балке.
- 8. Определение перемещений в раме.
- 9. Расчет статически неопределимой балки.
- 10. Расчет статически неопределимой рамы.
- 11. Расчет на прочность балки при косом изгибе.
- 12. Расчет стержня на внецентренное сжатие.
- 13. Расчет плоской рамы на прочность при изгибе с кручением.

14. Расчет на устойчивость центрально сжатого стержня.

Типовые шкала и критерии оценки результатов обучения при выполнении курсовой работы для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС программы специалитета.

2.3.3. Экзамен (4 семестр)

Условиями допуска к экзамену являются успешная защита курсовой работы и положительная интегральная оценка по результатам текущего и рубежного контроля.

Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний и умений и практические задания (ПЗ) для проверки освоенных владений.

Билет формируется таким образом, чтобы в него попали теоретические вопросы и практические задания, контролирующие уровень сформированности всех заявленных дисциплинарных компетенций. Форма билета представлена в общей части ФОС программы специалитета.

Типовые шкала и критерии оценки результатов обучения при экзамене для компонентов *знать, уметь и владеть* приведены в общей части ФОС программы специалитета.

Типовые вопросы и задания для экзамена по дисциплине

Типовые вопросы для контроля усвоенных знаний:

- 1. Основные принципы и гипотезы сопротивления материалов.
- 2. Понятие о напряжениях и деформациях в точке.
- 3. Деформации (продольная и поперечная) при растяжении и сжатии.
- 4. Связь внутренних силовых факторов с напряжениями (интегральные зависимости).
- 5. Главные оси и главные моменты инерции сечения.
- 6. Перемещения при изгибе.
- 7. Метод Мора для определения перемещений в упругих системах.
- 8. Способ Верещагина для определения перемещений в упругих системах.
- 9. Понятие о статически неопределимых системах.
- 10. Канонические уравнения метода сил.

Типовые вопросы для контроля освоенных умений:

- 1. Реальный объект и расчетная схема.
- 2. Нормальные силы и их эпюры в стержнях, работающих на растяжение-сжатие.
- 3. Крутящие моменты и их эпюры.
- 4. Напряжения и деформации в валах круглого и кольцевого сечений.
- 5. Внутренние силовые факторы при изгибе.
- 6. Дифференциальные зависимости при изгибе между q, Q_y и M_x . Их использование при построении эпюр поперечных сил и изгибающих моментов.
 - 7. Нормальные напряжения в балках при чистом изгибе.
 - 8. Касательные напряжения в балках при поперечном изгибе. Формула Журавского.
 - 9. Напряжения при косом изгибе.
 - 10. Напряжения при внецентренном растяжении (сжатии).

Типовые задачи (практические задания) для контроля приобретенных владений:

- 1. Проектировочный расчет на прочность статически определимой стержневой системы.
 - 2. Расчет на грузоподъемность статически определимой стержневой системы.
 - 3. Расчет на прочность статически определимой балки сплошного сечения.
 - 4. Расчет на прочность статически определимой балки тонкостенного сечения.
 - 5. Определение перемещений в статически определимой балке.
 - 6. Расчет на прочность статически определимой рамы.
 - 7. Расчет на прочность статически неопределимой балки.
 - 8. Расчет на прочность статически неопределимой рамы.
 - 9. Расчет на прочность балки при косом изгибе.
 - 10. Внецентренное сжатие (расчет на прочность коротких стержней).

Полный набор теоретических вопросов и практических заданий для экзамена хранится на кафедре строительных конструкций и вычислительной механики.

Шкалы оценивания результатов обучения при экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных дисциплинарных компетенций, проводится по 4-х балльной шкале оценивания путем контроля во время экзамена.

3. Критерии оценивания уровня сформированности компонентов и компетенций

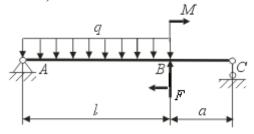
3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при зачете считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде зачета используются типовые критерии, приведенные в общей части ФОС образовательной программы.


МИНОБРНАУКИ РОССИИ ФГАОУ ВПО «Пермский национальный исследовательский политехнический университет» (ПНИПУ)

08.05.01 «Строительство уникальных зданий и сооружений» Кафедра «Строительные конструкции и вычислительная механика»

<u>Дисциплина «Сопротивление материалов»</u>

БИЛЕТ № 1

- 1. Что в разделе «*Косой изгиб*» обозначается как « EI_x , EI_y »? (контроль знаний).
- 2. Сформулируйте следующее понятие (при необходимости дополните свой ответ формулами, схемами или примерами): «Деформационная проверка правильности раскрытия статической неопределимости» (контроль знаний).
- 3. Выведите зависимости, описывающие *касательные напряжения в балках при поперечном изгибе; формула Журавского* (контроль знаний).
- 4. Задача. Определить номер стандартного двутавра из условия прочности. Определить прогиб в сечении B и угол поворота в сечении C (контроль умений и владений).

Исходные данные: l=2.5 м; a=1.0 м; M=19 кНм; F=25 кH; q=24 кH/м, $R=210 \text{ МПа}, E=2\cdot10^5 \text{ МПа}.$

Составитель		Т.Э.Римм		
	(подпись)			
Заведующий кафедрой		Г.Г.Кашеварова		
7.5	(подпись)			
« <u> </u> »	2022г.			